This website works better with desktop in both themes, for mobile devices please change to light theme.

Weight of Evidence & Information Value

Weight of Evidence & Information Value#

References

Weight of evidence

  • Generally measure of separation

  • measure how much evidence supports or undermines the hypothesis

The information value (IV) is a weighted sum of the WOE of the characteristic’s attributes. The weight is the difference between the conditional probability of an attribute for an event and the conditional probability of that attribute for a nonevent.

\begin{align*} \text{Weight of Evidence} &= \ln{(\frac{\text{% of non-event}}{\text{% of event}})} = \ln{\frac{\text{% of y = 0}}{\text{% of y = 1}}}\\ \\ \text{Information Value} &= \sum{(\text{% of non-event} - \text{% of event})} * \text{WOE} \end{align*}

Information Value

Variable Predictiveness

Less than 0.02

Not useful for prediction

0.02 to 0.1

Weak predictive Power

0.1 to 0.3

Medium predictive Power

0.3 to 0.5

Strong predictive Power

>0.5

Suspicious Predictive Power

[1]:
from sklearn.datasets import load_breast_cancer
from mightypy.stats import WOE_IV
import pandas as pd

import matplotlib.pyplot as plt
[2]:
dataset = load_breast_cancer(as_frame=True)

df = dataset.frame
df.head(3)
[2]:
mean radius mean texture mean perimeter mean area mean smoothness mean compactness mean concavity mean concave points mean symmetry mean fractal dimension ... worst texture worst perimeter worst area worst smoothness worst compactness worst concavity worst concave points worst symmetry worst fractal dimension target
0 17.99 10.38 122.8 1001.0 0.11840 0.27760 0.3001 0.14710 0.2419 0.07871 ... 17.33 184.6 2019.0 0.1622 0.6656 0.7119 0.2654 0.4601 0.11890 0
1 20.57 17.77 132.9 1326.0 0.08474 0.07864 0.0869 0.07017 0.1812 0.05667 ... 23.41 158.8 1956.0 0.1238 0.1866 0.2416 0.1860 0.2750 0.08902 0
2 19.69 21.25 130.0 1203.0 0.10960 0.15990 0.1974 0.12790 0.2069 0.05999 ... 25.53 152.5 1709.0 0.1444 0.4245 0.4504 0.2430 0.3613 0.08758 0

3 rows × 31 columns

[3]:
target_map = {0: 'False', 1: 'True'}

df.insert(loc=df.shape[1], column='label', value=df['target'].map(target_map))
[9]:
woe_iv_obj = WOE_IV(event='True', non_event='False', target_col='label',bucket_col='mean smoothness')
[10]:
woe, iv = woe_iv_obj.values(df)
[11]:
woe
[11]:
label False True adj_event adj_non_event %_event_True %_non_event_False woe iv
buckets_mean smoothness
(0.0516, 0.0797] 3 54 54 3 0.151261 0.014151 -2.369222 0.324843
(0.0797, 0.0842] 10 47 47 10 0.131653 0.047170 -1.026413 0.086714
(0.0842, 0.0879] 9 48 48 9 0.134454 0.042453 -1.152827 0.106061
(0.0879, 0.0918] 21 36 36 21 0.100840 0.099057 -0.017847 0.000032
(0.0918, 0.0959] 22 35 35 22 0.098039 0.103774 0.056844 0.000326
(0.0959, 0.0993] 23 33 33 23 0.092437 0.108491 0.160136 0.002571
(0.0993, 0.103] 25 32 32 25 0.089636 0.117925 0.274289 0.007759
(0.103, 0.108] 30 30 30 30 0.084034 0.141509 0.521150 0.029953
(0.108, 0.115] 32 22 22 32 0.061625 0.150943 0.895843 0.080016
(0.115, 0.163] 37 20 20 37 0.056022 0.174528 1.136335 0.134662
[12]:
iv
[12]:
0.7729378109850594
[13]:
fig = woe_iv_obj.plot(figsize=(15,6))
fig.tight_layout();
../_images/MathExploration_woe_iv_10_0.png